Vehicle sideslip angle measurement based on sensor data fusion using an integrated ANFIS and an Unscented Kalman Filter algorithm

نویسندگان

  • B. L. Boada
  • V. Diaz
چکیده

Most existing ESC (Electronic Stability Control) systems rely on the measurement of both yaw rate and sideslip angle. However, one of the main issues is that the sideslip angle cannot be measured directly because the sensors are too expensive. For this reason, sideslip angle estimation has been widely discussed in the relevant literature. The modeling of sideslip angle is complex due to the non-linear dynamics of the vehicle. In this paper, we propose a novel observer based on ANFIS, combined with Kalman Filters in order to estimate the sideslip angle, which in turn is used to control the vehicle dynamics and improve its behavior. For this reason, low-cost sensor measurements which are integrated into the actual vehicle and executed in real time have to be used. The ANFIS system estimates a “pseudo-sideslip angle” through parameters which are easily measured, using sensors equipped in actual vehicles (inertial sensors and steering wheel sensors); this value is introduced in UKF in order to filter noise and to minimize the variance of the estimation mean square error. The estimator has been validated by comparing the observed proposal with the values provided by the CARSIM model, which is a piece of experimentally validated software. The advantage of this estimation is the modeling of the non-linear dynamics of the vehicle, by means of signals which are directly measured from vehicle sensors. The results show the effectiveness of the proposed ANFISþUKF-based sideslip angle estimator. & 2015 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Experimental Evaluation of integrated orientation estimation algorithm Autonomous Underwater Vehicle Based on Indirect Complementary Filter

This paper aims is to design an integrated navigation system constituted by low-cost inertial sensors to estimate the orientation of an Autonomous Underwater Vehicle (AUV) during all phases of under water and surface missions. The proposed approach relied on global positioning system, inertial measurement unit (accelerometer & rate gyro), magnetometer and complementary filter technique. Complem...

متن کامل

A New Fault Tolerant Nonlinear Model Predictive Controller Incorporating an UKF-Based Centralized Measurement Fusion Scheme

A new Fault Tolerant Controller (FTC) has been presented in this research by integrating a Fault Detection and Diagnosis (FDD) mechanism in a nonlinear model predictive controller framework. The proposed FDD utilizes a Multi-Sensor Data Fusion (MSDF) methodology to enhance its reliability and estimation accuracy. An augmented state-vector model is developed to incorporate the occurred senso...

متن کامل

Using the Unscented Kalman Filter and a Non-linear Two-track Model for Vehicle State Estimation

In order to evaluate the driving stability of a motor vehicle, the accurate determination of the vehicle sideslip angle is of significant importance. With the help of the sensor signals in today’s production vehicles, this state can only be determined with limited accuracy. We propose an algorithm for the determination and estimation of the vehicle state based on the Unscented Kalman Filter. In...

متن کامل

Unscented Kalman Filtering for Attitude Determination Using MEMS Sensors

This paper presents the results of a quaternion-based unscented Kalman filtering for attitude estimation using low cost MEMS sensors. The unscented Kalman filter uses the pitch and roll angles computed from gravity force decomposition as the measurement for the filter. The immeasurable gravity accelerations are deduced from the outputs of the three axes accelerometers, the relative acceleration...

متن کامل

Vehicle Sideslip Angle Estimation Using Two Single-antenna Gps Receivers

Knowing vehicle sideslip angle accurately is critical for active safety systems such as Electronic Stability Control (ESC). Vehicle sideslip angle can be measured through optical speed sensors, or dual-antenna GPS. These measurement systems are costly (~$5k to $100k), which prohibits wide adoption of such systems. This paper demonstrates that the vehicle sideslip angle can be estimated in real-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016